Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana
نویسندگان
چکیده
BACKGROUND Abiotic stresses are serious threats to plant growth, productivity and result in crop loss worldwide, reducing average yields of most major crops. Although abiotic stresses might elicit different plant responses, most induce the accumulation of reactive oxygen species (ROS) in plant cells leads to oxidative damage. L-ascorbic acid (AsA, vitamin C) is known as an antioxidant and H2O2-scavenger that defends plants against abiotic stresses. In addition, vitamin C is also an important component of human nutrition that has to be obtained from different foods. Therefore, increasing the vitamin C content is important for improving abiotic stresses tolerance and nutrition quality in crops production. RESULTS Here, we show that the expression of AtOxR gene is response to multiple abiotic stresses (salt, osmotic, metal ion, and H2O2 treatment) in both the leaves and roots of Arabidopsis. AtOxR protein was localized to the Endoplasmic Reticulum (ER) in yeast and Arabidopsis cells by co-localization analysis with ER specific dye. AtOxR-overexpressing transgenic Arabidopsis plants enhance the tolerance to abiotic stresses. Overexpression of AtOxR gene resulted in AsA accumulation and decreased H2O2 content in transgenic plants. CONCLUSIONS In this study, our results show that AtOxR responds to multiple abiotic stresses. Overexpressing AtOxR improves tolerance to abiotic stresses and increase vitamin C content in Arabidopsis thaliana. AtOxR will be useful for the improvement of important crop plants through moleculer breeding.
منابع مشابه
Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملIdentification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کاملImproved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کاملOverexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis
A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evide...
متن کاملArabidopsis thaliana mTERF10 and mTERF11, but Not mTERF12, Are Involved in the Response to Salt Stress
Plastid gene expression (PGE) is crucial for plant development and acclimation to various environmental stress conditions. Members of the "mitochondrial transcription termination factor" (mTERF) family, which are present in both metazoans and plants, are involved in organellar gene expression. Arabidopsis thaliana contains 35 mTERF proteins, of which mTERF10, mTERF11, and mTERF12 were previousl...
متن کامل